Modality options and their benefits in the early stage after orthopaedic surgery in canine

Updated: Feb 3

This blog will consider modalities commonly used by veterinary physiotherapists to improve the healing process after complications, and the overall recovery post stifle surgery in dogs.

In recent years, the application of Veterinary physiotherapy techniques after orthopaedic surgeries has increased. Veterinary surgeons are becoming more aware that surgery, along with its traditional protocols, may not on its own be enough to return the animals to normal function. Complications create further problems, and it is these that may be addressed with physiotherapy modalities.

There is considerable evidence which suggests that postoperative early vet physiotherapy following surgical complications after stifle surgery in dogs helps to decrease oedema and inflammation; encourages early weight bearing of the operated limb; prevents muscle wastage; increases stifle joint range of motions and; enhances balance and proprioception recovery.

Furthermore, it is suggested that the rehabilitation in dogs should commence on the first day after stifle surgery to achieve better outcomes and recovery rates (Davidson et al., 2005; Piermattei et al., 2006; Marsolais et al., 2002; Monk et al., 2006).

1. Massage

One of the problems identified with stifle surgery is that it creates joint stiffness. It is thought that massage may alleviate this by increasing the blood flow in the target tissue and reducing pain by manipulation of soft tissues using different pressure and strokes techniques. Furthermore, (Sharp, 2012b) in his clinical review stated that effleurage technique for 2-3 minutes in the early stage after fracture surgery (osteotomy of tibia in case of TPLO stifle surgery) is beneficial for swelling and inflammation reduction in an operated limb and also helps to control pain. This is supported by studies in humans using massage and there appears to be overall agreement that massage at an early stage after surgery can reduce oedema and pain as well as promote the improvement of range of motions. Even a brief massage of 5 minutes eases pain (Kim et al., 2015; Miller et al., 2015). This could prove beneficial in the post-surgery rehabilitation of dogs and therefore should be considered as a modality.

2. Therapeutic exercise

The use of therapeutic exercise during post-operative stifle surgery recovery appears to be beneficial in the first 6 months of the healing process as it helps to improve range of motion, decrease stiffness and pain and restore function.

Therapeutic exercise is usually prescribed as a part of a veterinary physiotherapy treatment protocol as well as the exercise performed in the home environment.

There are three studies describing different walking exercise timings after stifle surgery (Monk et al., 2006; Marsolais et al., 2002; Jerre, 2009) and these suggest that walking should begin immediately following stifle surgery.

Even though the cadence of walking that was used in each of these studies was different they all implemented a walk straight after surgery and the majority of dogs in all three studies returned to full functionality. Therefore, walking exercise is clearly beneficial for dogs in the early postoperative recovery after stifle surgery.

3. Cold (Cryotherapy)

After any surgery, inflammation, pain, haemorrhage and decrease of range of motion (ROM) can be detrimental whether this is in dogs or humans and cryotherapy is one way of addressing this. For example, (Bocobo et al., 1991) examined the effect of topical cooling on intra-articular temperature and found that the temperature of the intra-articular tissue was lower after only 5 minutes of topical cooling around the dog’s stifle joint. (Rooks et al., 1997) also recommended to apply cold packs for a period of 5 to 20 minutes after orthopaedic surgery or in rehabilitation to decrease muscle spasm and oedema. Moreover, (Lin, 2003) in his study on humans, showed that the use of a cold pack around the knee joint for 10 minutes has a significant effect on the range of motion of the knee joint - in particular on flexion. Furthermore, (Millis, 2004) recommended cryotherapy straight after surgery for 15 to 20 minutes during first 4 days and after exercise 2 to 4 times per day for 20 to 25 minutes during rehabilitation. It has been suggested to evaluate the cooling tissue after the first 5 minutes of the application as according to (Vannatta et al., 2004) timing of cooling may depend on tissue depths. In humans it has been reported that the use of cold treatment over a longer period results in pain reduction, increase of ROM and improvement in weight bearing (Martin et al., 2001).

In summary, the studies reviewed suggest that cryotherapy is beneficial to limb function in the acute post-surgery stage.

4. Heat (Thermotherapy)

Authors agree that heat increases the blood flow to the treated area which stimulates the metabolism and improves tissue elasticity while enhancing ROM through decreased stiffness in the stifle joint, providing relaxation and pain relief (Heinrichs, 2004; Sharp, 2008; Steiss and Levine, 2005).

(Millis, 2004) recommended the use of heat application in dogs around the joint after the acute inflammatory phase of tissue healing before exercising with the aim of reducing joint stiffness and increasing the elasticity of capsular structures.

5. Passive range of motion (PROM)

PROM is the full motion that the joint may be moved through with assistance. The benefits of PROM following stifle surgery in dogs are an increase of the blood flow to the area, lubrication of the joint by synovial liquid which brings nutrition to the joint, maintaining mobility, and reducing pain (Shumway, 2007).

It has long been recognised that immobilising the joint is detrimental to the mobility, Akeson et al., (1980) found that immobilization of the joint causes significant losses in lubrication by synovial liquid and increased collagen formation which in turn results in stiffness of the joint. In a different study, (NOYES et al., 1974) investigated the effect of immobility on the anterior cruciate ligament in primates where it was shown that after eight weeks of the joint disuse, the functional capacity of the ligament significantly reduced but after restarting exercises, it returned to near normal. However, ligament strength was only partially recovered.

By demonstrating the detrimental effects of immobilisation on joints these papers suggest that early movement is more beneficial than immobilisation in terms of overall joint health.

There are several studies that suggest that an early range of motion on the operated stifle joint in dogs increases the mobility, improve cartilage nutrition, strength of collagen fibres in the ligaments and reduces the process of osteoarthritis (Marsolais et al., 2002; Levine and DNb, 2014).

Furthermore, there are a number of studies on the effect of early motion in humans (Beynnon and Johnson, 1996; Glasgow et al., 1993; Shelbourne and Davis, 1999). These suggest that early PROM post-surgery is effective in reducing pain, joint effusion, minimising scar formation that limits joint movement, development of degenerative processes in joint and benefits in the increase of ROM, muscle mass and strength of the limb.

In summary, the studies reviewed demonstrated the benefits of passive range of motion exercise straight after surgery that enhance movement and the healing process in the joint. It should therefore be considered in early rehabilitation after stifle surgery in dogs.

6. Therapeutic Laser Therapy

Therapeutic lasers are used to accelerate the healing phases by reducing inflammation, oedema and pain, enhancing wound repair, soft tissue healing including existing scar tissue, bone fracture, and later assisting with osteoarthritis maintenance. Therefore, it can be co